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Tyr26 phosphorylation of PGAM1 provides
a metabolic advantage to tumours
by stabilizing the active conformation
Taro Hitosugi1,*, Lu Zhou2,*, Jun Fan1, Shannon Elf1, Liang Zhang2, Jianxin Xie3, Yi Wang3, Ting-Lei Gu3,

Masa Alečković4, Gary LeRoy4, Yibin Kang4, Hee-Bum Kang 1, Jae-Ho Seo1, Changliang Shan1, Peng Jin5,

Weimin Gong6, Sagar Lonial1, Martha L. Arellano1, Hanna J. Khoury1, Georgia Z. Chen1, Dong M. Shin1,

Fadlo R. Khuri1, Titus J. Boggon7, Sumin Kang1, Chuan He2 & Jing Chen1

How oncogenic signalling coordinates glycolysis and anabolic biosynthesis in cancer cells

remains unclear. We recently reported that the glycolytic enzyme phosphoglycerate mutase 1

(PGAM1) regulates anabolic biosynthesis by controlling intracellular levels of its substrate

3-phosphoglycerate and product 2-phosphoglycerate. Here we report a novel mechanism in

which Y26 phosphorylation enhances PGAM1 activation through release of inhibitory E19 that

blocks the active site, stabilising cofactor 2,3-bisphosphoglycerate binding and H11 phos-

phorylation. We also report the crystal structure of H11-phosphorylated PGAM1 and find that

phospho-H11 activates PGAM1 at least in part by promoting substrate 3-phosphoglycerate

binding. Moreover, Y26 phosphorylation of PGAM1 is common in human cancer cells and

contributes to regulation of 3-phosphoglycerate and 2-phosphoglycerate levels, promoting

cancer cell proliferation and tumour growth. As PGAM1 is a negative transcriptional target of

TP53, and is therefore commonly upregulated in human cancers, these findings suggest that

Y26 phosphorylation represents an additional acute mechanism underlying phosphoglycerate

mutase 1 upregulation.
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T
he Warburg effect describes the observation that tumour
cells take up more glucose than normal tissue and favour
glycolysis even in the presence of oxygen. This phenom-

enon is not limited to solid tumours, as leukaemia cells are also
highly glycolytic1,2. One metabolic advantage of the Warburg
effect is that a boost in aerobic glycolysis in tumour cells
generates more ATP more quickly than normal cells that rely on
oxidative phosphorylation3. Moreover, tumour cells use glycolytic
intermediates for anabolic biosynthesis of macromolecules

including nucleotides, amino acids and fatty acids, which are
used to produce RNA/DNA, proteins and lipids, respectively.
These ‘building blocks’ are necessary for cell proliferation, and
their expeditive production is crucial to fulfill the demands of
rapidly growing tumours3. However, how tumour cells coordinate
glycolysis and anabolic biosynthesis remains largely unknown.

We recently reported that the glycolytic enzyme phosphogly-
cerate mutase 1 (PGAM1) regulates anabolic biosynthesis by
controlling intracellular levels of its substrate 3-phosphoglycerate
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Figure 1 | Y26 phosphorylation enhances PGAM1 activity. (a) Schematic representation of PGAM1 with identified tyrosine phosphorylation sites in

phospho-proteomics studies. (b) Immunoblotting of cell lysates for tyrosine phosphorylation of GST-PGAM1 when coexpressed with FGFR1 WTor a kinase-

dead form (KD). (c) Active, rFGFR1 (left) and EGFR (rEGFR; right) were incubated with Flag-PGAM1 in in vitro kinase assays. Tyrosine phosphorylation

of Flag-PGAM1 was assessed by western blot. (d) Enzyme activity of recombinant PGAM1 (rPGAM1) treated with or without rFGFR1 was measured

in the presence or absence of 10mM 2,3-BPG. (e) PGAM1 activity in the presence or absence of 2,3-BPG in cell lysates from human lung cancer H1299

(left) and leukaemia KG-1a cells (middle) treated with FGFR1 inhibitor TKI258, or head and neck cancer 212LN cells (right) treated with EGFR inhibitor

Tarceva. (f–g) Activity of diverse PGAM1 Y-F mutants treated with FGFR1 in the presence (g) or absence (f) of 10 mM 2,3-BPG. The values were

normalised to the activity level of WT PGAM1 without FGFR1 treatment. The error bars represent mean values±s.d. from three independent experiments

(*0.01oPo0.05; **Po0.01).
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(3-PG) and product 2-phosphoglycerate (2-PG)4. PGAM1
catalyses the conversion of 3-PG to 2-PG, a crucial step in
glycolysis. PGAM1 is activated upon binding of the cofactor 2,3-
bisphosphoglycerate (2,3-BPG), which phosphorylates PGAM1 at
histidine 11 (H11) by transferring the C3 phosphate group to H11
(ref. 5). During the conversion of 3-PG to 2-PG by PGAM1,
phospho-H11 of PGAM1 is positioned to facilitate transfer of
phosphate from phospho-H11 to C-2 of the substrate 3-PG. This
creates a 2,3-BPG intermediate in the catalytic pocket, which in
turn ‘re-phosphorylates’ H11 by transferring the C3 phosphate
group back to H11 to return the enzyme to its initial
H11-phosphorylated, fully activated state and allow for release
of product 2-PG. Such a ‘ping-pong’ mechanism of PGAM1
activation involving catalytic H11 phosphorylation by 2,3-BPG
has been known for decades, and is supported by kinetic
studies6,7 and isolation of the phospho-H11 containing peptide8.
However, the structural mechanisms underlying 2,3-BPG
binding and how H11 phosphorylation activates PGAM1
remain unknown.

PGAM1 activity has been reported to be upregulated in many
cancers, including hepatocellular carcinoma and colorectal
cancer9,10, probably due to increased PGAM1 gene expression
resulting from loss of TP53, as PGAM1 is a negative transcriptional
target of TP53 (refs 11–13). In consonance with this, we found
that PGAM1 protein expression and enzyme activity levels are
upregulated in human primary leukaemia cells from diverse
leukaemia patients with acute myeloid leukaemia, chronic
myelogenous leukaemia and B-cell acute lymphoblastic
leukaemia4. Moreover, we found that 3-PG binds to and
inhibits 6-phosphogluconate dehydrogenase (6PGD) in the
oxidative pentose phosphate pathway (PPP), while 2-PG
activates 3-PG dehydrogenase (PHGDH) to provide feedback
control of 3-PG levels. Inhibition of PGAM1 by shRNA or a small
molecule inhibitor PGMI-004A results in increased 3-PG and
decreased 2-PG levels in cancer cells, leading to significantly
decreased glycolysis, PPP flux, biosynthesis, cell proliferation and
tumour growth.

Here, we report that Y26 phosphorylation of PGAM1 is
common in human cancers, providing a proliferative advantage.
Structural analyses revealed a novel mechanism in which Y26
phosphorylation enhances PGAM1 activation by stabilising the
active conformation of PGAM1. We were also the first to
crystalise H11-phosphorylated PGAM1 and structural analysis

suggests that phospho-H11 activates PGAM1 at least in part by
promoting substrate 3-PG binding. Thus, Y26 phosphorylation of
PGAM1 represents a novel, acute mechanism underlying PGAM1
upregulation in cancer cells in addition to chronic changes
regulated by TP53.

Results
Y26 phosphorylation enhances 2,3-BPG-dependent PGAM1
activity. Our phospho-proteomics studies identified PGAM1 as
phosphorylated at multiple tyrosine sites including Y26, Y92,
Y119 and Y133 in murine haematopoietic Ba/F3 cells expressing
constitutively active ZNF198–FGFR1 fusion tyrosine kinase14

(Fig. 1a). In consonance with this observation, GST-tagged
PGAM1 was tyrosine phosphorylated in COS7 cells transiently
co-transfected with plasmids encoding FGFR1 wild-type (WT),
but not in cells co-expressing GST-PGAM1 and a kinase-dead
form of FGFR1 (Fig. 1b). We further confirmed this in an in vitro
kinase assay where active, recombinant FGFR1 (rFGFR1) or
EGFR (rEGFR) directly phosphorylated purified, Flag-tagged
recombinant PGAM1 (rPGAM1) at tyrosine residues (Fig. 1c).

PGAM1 is believed to be activated upon binding of cofactor
2,3-BPG, which was suggested to ‘phosphorylate’ PGAM1 at
histidine 11 (H11) by transferring the C3 phosphate to H11
(ref. 5). In a PGAM1 enzyme assay coupled with the FGFR1
in vitro kinase assay, we found that rFGFR1 significantly
enhanced rPGAM1 enzyme activity only in the presence but
not absence of 2,3-BPG (Fig. 1d). Notably, purified PGAM1 in
the absence of 2,3-BPG shows comparable level of enzyme
activity as PGAM1 in the presence of 2,3-BPG, indicating that the
purified recombinant PGAM1 is H11-phosphorylated and
activated to a certain extent, which may be due to modification
from bacteria or 3-PG applied in the experiments contaminated
with 2,3-BPG as previously described15. Nevertheless, these data
suggest that FGFR1-dependent tyrosine phosphorylation ‘further’
enhances PGAM1 activation.

In addition, in a PGAM1 enzyme activity assay, incubation
with cofactor 2,3-BPG significantly activates PGAM1 in cell
lysates from FGFR1-expressing lung cancer H1299 and leukaemia
KG-1a cells (Fig. 1e; left and middle, respectively) and EGFR-
expressing head and neck cancer 212LN cells (Fig. 1e; right),
while treatment with the FGFR1 small molecule inhibitor TKI258
or EGFR inhibitor Tarceva significantly decreases PGAM1
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Figure 2 | Y26 phosphorylation promotes cofactor 2,3-BPG binding to PGAM1. (a) Cartoon representation of 2,3-BPG location from structure 3FDZ

superposed on PGAM1 (PDB accession code: 1YFK). H11 and Y92 are directly proximal to and Y26 is also close to cofactor (2,3-BPG)/substrate (3-PG)

binding site. (b) 2,3-BPG analogue (8-hydroxy-1,3,6-pyrenetrisulfonate) competes with 2,3-BPG for binding to rPGAM1 protein, where 3mM 2,3-BPG

analogue was mixed with different concentrations of 2,3-BPG in reaction mixture containing 100mM Tris-HCl (pH 7.5). Fluorescence intensity of 2,3-BPG

analogue (ex: 362 nm, em: 520 nm) was measured before and 5min after the addition of 2.3mM rPGAM1 protein to the reaction mixture. Decrease in

fluorescence intensity of 2,3-BPG analogue indicates 2,3-BPG analogue binding to rPGAM1 protein. The values are presented as relative fluorescence units

(RFU). (c) Purified Flag-PGAM1 WT or Y26F were incubated with cofactor (represented by 2,3-BPG analogue, 8-hydroxy-1,3,6-pyrenetrisulfonate). The

cofactor binding affinity was determined by decrease in fluorescence intensity of the analogue. The values are presented as RFU. The error bars represent

mean values±s.d. from three independent experiments (*0.01oPo0.05; **Po0.01).
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enzyme activity, only in the presence but not absence of 2,3-BPG
in H1299 and KG-1a or 212LN cells, respectively.

We next performed mutational analysis and found that, in the
absence of 2,3-BPG, tyrosine phosphorylation by FGFR1 did not
alter enzyme activity of rPGAM1 WT, Y26F or Y133F.
Interestingly, Y92F mutant lost PGAM1 enzyme activity in the
presence and absence of rFGFR1, suggesting that Y92 is
intrinsically required for PGAM1 enzyme activity (Fig. 1f). In
contrast, in the presence of 2,3-BPG, rFGFR1 significantly
activates rPGAM1 WT and Y133F mutant (Fig. 1g). However,
substitution of Y26 abolished the FGFR1-dependent increase in
the PGAM1 enzyme activity. Y92F mutant again showed a very
low level of PGAM1 activity, however, incubation with rFGFR1
resulted in significantly increased PGAM1 enzyme activity of
Y92F in the presence of 2,3-BPG (Fig. 1g). These data together
suggest that Y26 phosphorylation is responsible for mediating
FGFR1-dependent, ‘enhanced’ activation of PGAM1 in the
presence of 2,3-BPG.

Y26 phosphorylation PGAM1 enhances H11 phosphorylation.
Structural studies revealed that both H11 and Y92 are directly
proximal to the active site where both cofactor (2,3-BPG) and
substrate (3-PG) bind (Fig. 2a)16, suggesting that Y92 may be
crucial for 2,3-BPG binding and PGAM1 activity, consistent with
our observation that substitution of Y92 abolishes PGAM1
enzyme activity (Fig. 1f,g). This is also consistent with a previous
report that S14, T23, G24, R90, Y92, K99, R116 and R117 are
involved in binding of cofactor 2,3-BPG and substrate 3-PG,
which share the same binding pocket on PGAM1 (ref. 17). Y26 is
also close to the catalytic site (Fig. 2a); as Y26-phoshorylation by
FGFR1 enhances PGAM1 in the presence of 2,3-BPG, this
suggests a potential mechanism wherein Y26 phosphorylation by
FGFR1 may stabilise the H11-phosphorylated PGAM1.

To test this hypothesis, we incubated active rFGFR1 with
purified, recombinant PGAM1WT and Y26F mutant in an in vitro
kinase assay, followed by incubation with a competitive 2,3-BPG
fluorescent analogue (8-hydroxy-1,3,6-pyrenetrisulfonate)18,19

(Fig. 2b). The decrease in fluorescence (ex: 362 nm, em: 520 nm)
compared with buffer control was measured as 2,3-BPG binding
ability. Phosphorylation of PGAM1 WT by FGFR1 resulted in a
significant increase in the amount of bound 2,3-BPG analogue,
whereas substitution of PGAM1 Y26 abolished enhanced binding
of cofactor in the presence of rFGFR1 (Fig. 2c).

Moreover, a quantitative mass spectrometry-based study
(Fig. 3a) revealed that the H11 phosphorylation levels of Y26F
mutant is significantly lower compared with PGAM1 WT in an
in vitro kinase assay using PGAM1 proteins incubated with
rFGFR1 in the presence of 2,3-BPG (Fig. 3b,c). Similar results were
obtained when using Flag-tagged mouse PGAM1 (mPGAM1) WT

and Y26F from ‘rescue’ H1299 cells with stable knockdown of
endogenous human PGAM1 (hPGAM1) and rescue expression
of Flag-mPGAM1 WT or Y26F mutant, respectively (Fig. 3d,e).
These results suggest that Y26 phosphorylation may
enhance PGAM1 activity by stabilising the H11-phosphorylated
PGAM1.

Y26 phosphorylation stabilises H11-phosphorylated PGAM1.
To further understand the structural properties of Y26-phos-
phorylation-enhanced activation of H11-phosphorylated
PGAM1, we crystalised human PGAM1 with phosphorylated
H11 (1.65Å; Supplementary Table S1) from purified PGAM1
protein incubated with 2,3-BPG, in which the occupancy of
phosphate on H11 was refined to be 0.70; mass spectrometry
analysis of the 2,3-BPG-treated PGAM1 supports that the
majority of PGAM1 protein was phosphorylated (Supplementary
Fig. S1a). We also crystalised the apo-form of non-phosphory-
lated WT human PGAM1 (2.08 Å) as previously reported16. Both
structures of the H11-phosphorylated and non-phosphorylated
forms were superposed with a RMSD value of 0.34Å
(Supplementary Fig. S1b).

Upon comparison between these two structures, we found a
major conformational change at the loop 12–23 in the H11-
phosphorylated form, which is close to H11 that is in the active
site of PGAM1 (Fig. 4a). Further structural analysis revealed that,
in the structure of non-phosphorylated PGAM1 form, Y26 docks
on W16 in the flexible loop (Fig. 4b,c), while the negative charged
E19 is located in the positively charged active site, blocking access
of cofactor (2,3-BPG) and substrate (3-PG) to the active site
(Fig. 4c). Moreover, E19 forms hydrogen bonds with residues S14
and S23 on the loop, which stabilise the conformation of non-
phosphorylated PGAM1 (Fig. 4c). In contrast, Y26 is exposed to
the surface in the structure of the H11-phosphorylated form of
PGAM1, whereas E19 flips away from the active site to allow the
negatively charged phosphate group of phosphorylated H11 to be
accommodated (Fig. 4d). In addition, the phosphorylated-H11
forms extensive hydrogen bonds with adjacent residues, including
R10, R62, E89, H186 and G187, through its phosphate group
(Fig. 4d). These hydrogen bonds also contribute to the
stabilisation of the phosphorylated-histidine group captured in
the crystal, which, otherwise, is generally unstable in the aqueous
solution with a half-life around 30min (ref. 20).

These data together suggest a model in which Y26
phosphorylation may shift the protein conformation to release
the negatively charged E19 that blocks the active site (Fig. 4e),
thus promoting 2,3-BPG binding and consequently H11
phosphorylation, which may also help to keep the active site
open for substrate (3-PG) binding (Fig. 4f). Please see below for
detailed discussion.

Figure 3 | Y26 phosphorylation results in increased H11 phosphorylation of PGAM1 in vitro and in vivo. (a) Detection of H11 phosphorylation in PGAM1

using LC-MS/MS. Tandem mass spectrometry (MS/MS) spectrum of phosphorylated PGAM1 peptide pHGESAWNLENR (residue number 11–21) collected

using collision-induced dissociation (CID) fragmentation. Underlined nominal masses above and below the sequence denote the b and y ions, respectively

that were annotated from the spectrum. The expected and observed mass to charge ratio (m/z) for the [Mþ 2Hþ ]2þ precursor ion is provided.

[M-H3PO4]þ 2 represents molecular ion with loss of the phosphate group. (b,c) Phosphorylation by rFGFR1 leads to increased H11 phosphorylation of

Flag-PGAM1 WT but not Y26F in the presence of 10mM 2,3-BPG (b). Panel (c) shows relative quantification of H11-phosphorylated PGAM1 using reverse

phase liquid chromatography. MS data for HGESAWNLENR (upper three red spectra in each panel) and pHGESAWNLENR (lower three green spectra in

each panel) were used to calculate the relative levels of phosphorylated and unphosphorylated peptide across all observable charge states in Flag-tagged

PGAM1WTand Y26Fmutant incubated with active FGFR1 and 2,3-BPG for one hour (c, left and right, respectively). The relative abundance was normalised

to the largest peak of each scan, which corresponds to 5.5E7 (c, left) and 2.26E7 (c, right). (d,e) Rescue cells expressing mouse PGAM1 (mPGAM1) Y26F

demonstrate reduced H11-phosphorylated levels compared with cells with mPGAM1 WT (d). WT or Y26F: cells with stable knockdown of endogenous

hPGAM1 and rescue expression of mPGAM1 WTor Y26F mutant, respectively. Panel (e) shows relative quantification of H11-phosporylated PGAM1 using

reverse phase liquid chromatography with Flag-tagged PGAM1 WT and Y26F mutant proteins isolated from rescue H1299 cells (e, left and right,

respectively). The relative abundance was normalised to the largest peak of each scan, which corresponds to 1.12E7 (e, left) and 1.96E7 (e, right). The error

bars represent mean values±s.d. from two independent experiments (*0.01oPo0.05; **Po0.01).
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Y26 Phosphorylation of PGAM1 is common in human cancer
cells. We also generated an antibody that specifically recognises
PGAM1 phospho-Y26 (Supplementary Fig. S2a). We found that
PGAM1 is commonly expressed and phosphorylated at Y26 in

diverse leukaemia and multiple myeloma cells associated with
various constitutively activated tyrosine kinase mutants, as well as
various human solid tumour cells including lung, prostate, breast
and head and neck cancer cells (Fig. 5a). In addition, we found
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that PGAM1 protein expression and Y26 phosphorylation levels
are upregulated in primary leukaemia cells from diverse acute
myeloid leukaemia, chronic myelogenous leukaemia and B-cell
acute lymphoblastic leukaemia patients (n¼ 5), compared with
control peripheral blood cells from healthy donors (n¼ 4)
(Supplementary Fig. S2b), and PGAM1 protein levels are sig-
nificantly upregulated in head and neck tumour samples com-
pared with normal tissue controls detected by immuno-
histochemical staining (Supplementary Fig. S2c). In in vitro
kinase assays, purified PGAM1 proteins were directly phospho-
rylated at Y26 by diverse recombinant, active oncogenic tyrosine
kinases including FGFR1, EGFR, FLT3 and JAK2 (Fig. 5b).
Moreover, inhibiting FGFR1 by treatment with TKI258 resulted
in decreased PGAM1 Y26 phosphorylation in FGFR1-expressing
lung cancer H1299 cells and leukaemia KG-1a cells (Fig. 5c; left
and right, respectively). In addition, inhibition of FLT3-ITD by
TKI258 (Fig. 5d) and JAK2 by AG490 (Fig. 5e) resulted in
decreased Y26 phosphorylation of PGAM1 in the pertinent
human cancer cell lines.

Y26 phosphorylation of PGAM1 promotes tumour growth. In
order to determine the role of Y26 phosphorylation of PGAM1 in
cancer cell metabolism and tumour growth, we next generated
‘rescue’ H1299 cells as described14 by RNAi-mediated stable
knockdown of endogenous hPGAM1 and rescue expression of
Flag-tagged mPGAM1 WT or Y26F (Fig. 6a). We found that,
compared with mPGAM1 WT rescue cells, expression of the
catalytically less active Y26F mutant attenuates PGAM1 activity
in the presence of 2,3-BPG (Fig. 6b), which results in decreased
glycolytic rate (Fig. 6c), oxidative PPP flux and NADPH/NADPþ

ratio (Fig. 6d,e, respectively), as well as reduced anabolic
biosynthesis including RNA and lipid biosynthesis using
14C-glucose as carbon source, accompanied by reduced
NADPH/NADPþ ratio (Fig. 6f,g, respectively). However,
attenuation of PGAM1 by stable knockdown or expression of
Y26F mutant does not affect lipid and RNA biosynthesis from
14C-glutamine (Supplementary Fig. S2d,e, respectively).
Interestingly, attenuation of PGAM1 in cancer cells does not
affect the intracellular ATP levels (Fig. 6h) or O2 consumption
rate (Supplementary Fig. S2f), nor sensitivity of cells to treatment
with oligomycin, a mitochondrial ATP synthase inhibitor, with
regard to ATP levels and O2 consumption rate (Fig. 6h and
Supplementary Fig. S2f, respectively). These results together
suggest that Y26 phosphorylation levels of PGAM1 are important
for coordination between glycolysis and PPP/biosynthesis using
glucose but not glutamine as a carbon source, while attenuation of
PGAM1 does not significantly affect intracellular ATP levels.

In addition, we found that ‘rescue’ cells expressing mPGAM1
Y26F mutant demonstrate decreased cell proliferation compared
with control cells expressing mPGAM1 WT (Fig. 6i). Moreover,
we functionally validated these findings by performing xenograft
experiments. Nude mice were injected with Flag-mPGAM1 WT
rescue H1299 cells on the left flank and Y26F rescue cells on the
right flank (Fig. 6j). Ten million cells of each cell line were
injected and the mice were monitored for tumour growth over a
6-week time period. The masses of tumours derived from
PGAM1 Y26F rescue cells were significantly reduced compared
with those of tumours formed by Flag-mPGAM1 WT cells
(Fig. 6j).

Y26 phosphorylation of PGAM1 regulates 3-PG and 2-PG
levels. We recently reported that PGAM1 coordinates glycolysis
and anabolic biosynthesis by controlling intracellular levels of its
substrate 3-PG and product 2-PG, which consequently inhibits
6PGD in the oxidative PPP and activates 3-PHGDH in serine
biosynthesis to provide feedback regulation of 3-PG levels,
respectively4. In consonance with these findings, we found that,
compared with the mPGAM1 WT rescue cells, rescue expression
of the catalytically less active Y26F mutant results in increased
3-PG (Fig. 7a) and decreased 2-PG (Fig. 7b) levels, as well as
reduced anabolic biosynthesis of RNA and lipids (Fig. 7c,d,
respectively) and decreased cell proliferation (Fig. 7e), while
treatment with a cell permeable form of 2-PG (methyl-2-PG)
significantly rescues these phenotypes. These data together
suggest that PGAM1 Y26 phosphorylation levels, in addition to
PGAM1 protein expression levels4, are also important to control
intracellular 3-PG and 2-PG levels, which confers both metabolic
and proliferative advantages to cancer cells.

Discussion
Upregulated expression of PGAM1, likely due to loss of TP53,
has been demonstrated in diverse human tumours and
leukaemias4,9,10. In the current report, our findings suggest that,
besides the commonly increased gene expression of PGAM1 that
is likely due to loss of p53 in cancer cells, Y26 phosphorylation
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represents an alternative molecular mechanism underlying
PGAM1 upregulation in human cancers. Y26 phosphorylation
of PGAM1 is common in diverse human cancers and has been
detected in a number of phospho-proteomics studies performed
by our collaborators at Cell Signalling Technology Inc. using a
spectrum of human cancer cells and primary tissue samples
from human cancer patients (http://www.phosphosite.org/site
Action.do?id=11589). As tyrosine kinase signalling is commonly
upregulated in human cancers, our findings suggest that

phosphorylation of Y26 enhances PGAM1 activity, which may
represent a common, short-term molecular mechanism under-
lying upregulated PGAM1 activity in both leukaemias and solid
tumours, in addition to the chronic upregulation of PGAM1
gene expression that is believed to be due to loss of TP53 in
cancer cells.

Moreover, our findings that Y26 phosphorylation could
stabilise the active conformation of PGAM1 suggest a novel
mechanism by which PGAM1 activity is regulated. Our structural
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analyses suggest that Y26 phosphorylation could shift the
PGAM1 conformation that releases the negatively charged E19
from blocking the active site. By docking 2,3-BPG to the active
site of PGAM1 based on a previously published crystal structure
of bisphosphoglycerate mutase in complex with 2,3-BPG
(Fig. 4e)21, we observed that E19 blocks the active site of the
protein and consequently prevents binding of the cofactor 2,3-
BPG, which is required to transfer a phosphate group to H11,
leading to H11 phosphorylation. As we obtained H11-
phosphorylated PGAM1 crystal by incubating purified,
recombinant PGAM1 protein with excess 2,3-BPG, it is likely
that PGAM1 can be ‘phosphorylated’ by 2,3-BPG at H11 in the
absence of Y26 phosphorylation. This also explains the results
presented in Fig. 1d–g, which show that phosphorylation of
PGAM1 by FGFR1 serves only to enhance PGAM1 activation in
the presence of 2,3-BPG. However, our structural data suggest

that activation of PGAM1 would benefit from a conformational
change that precludes Y26 from forming hydrophobic
interactions with W16. This is accomplished when Y26 is
phosphorylated and thus negatively charged, which leads to
exposure of Y26 to the surface. This further stabilises the active,
H11-phosphorylated conformation, in which E19, a residue that
blocks the active site of the non-phosphorylated protein (Fig. 4e),
moves away to accommodate 2,3-BPG binding and consequently
allow H11 phosphorylation. Moreover, the active site with
exposed Y26 in the H11-phosphorylated PGAM1 is more
accessible for the substrate 3-PG (Fig. 4f), and such a
conformation is further stabilised by the multiple hydrogen
bonds formed between phosphorylated H11 and its surrounding
residues (Fig. 4d). The relatively low H11 phosphorylation
quantified by MS using recombinant protein or cell lysates can
be attributed to the fact that histidine phosphorylation is usually
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very unstable. In the protein (MALDI-MS and crystal) the
phospho-H11 is stabilised with surrounding residues of phospho-
H11 that contribute to its stability. Upon digestion to peptide, the
stabilization effect of the protein is lost and the phosphorylated
histidine is unstable with a half-life of 35min. The fact that we
observed H11 phosphorylation in the protein crystal structure
strongly indicates the protein-mediated stabilization of this
typically quite labile modification. Therefore, our findings
suggest that Y26 phosphorylation can shift the protein
conformation that contributes to PGAM1 activation and further
stabilise the active form of PGAM1.

Furthermore, our findings for the first time elucidate the
structural mechanism by which H11 phosphorylation contributes
to PGAM1 activation. Phospho-H11 activates PGAM1 at least in
part, by promoting substrate 3-PG binding. Recently, Vander
Heiden et al.22 showed that the pyruvate kinase substrate,
phosphoenolpyruvate (PEP) can transfer a phosphate to PGAM1
to ‘phosphorylate’ the catalytic H11 on PGAM1, producing
pyruvate in the absence of PKM2 activity. We tested this concept
and found that FGFR1-dependent enhancement of PGAM1
activity is not altered in the presence of physiological levels of
PEP (30 mM) (Supplementary Fig. S3). This suggests that Y26

phosphorylation- and PEP-dependent H11 phosphorylation are
independent mechanisms that contribute to PGAM1 activation.

We recently reported that PGAM1 regulates anabolic
biosynthesis by controlling intracellular levels of its substrate
3-PG and product 2-PG (ref. 4). The concentrations of these
glycolytic metabolites can directly affect the catalytic activity of
enzymes involved in PPP (3-PG binds to and inhibits 6PGD in
the oxidative PPP) and biosynthesis (2-PG activates PHGDH in
serine biosynthesis pathway), which represents a novel, additional
link between glycolysis, PPP and biosynthesis. Inhibition of
PGAM1 by shRNA or a small molecule inhibitor PGMI-004A
results in increased 3-PG and decreased 2-PG levels in cancer
cells, leading to significantly decreased glycolysis, PPP flux and
biosynthesis, and reduced cancer cell proliferation and tumour
growth4. In consonance with these findings, substitution of Y26
attenuates PGAM1 activity, leading to accumulation of 3-PG and
reduction of 2-PG in cancer cells, accompanied by decreased
glycolysis, PPP/anabolic biosynthesis and cell proliferation, as
well as tumour growth in xenograft mice.

It is somewhat surprising that treatment with 5 mM methyl-2-
PG rescues the decreased 2-PG level to B30 mM in cells
expressing PGAM1 Y26F mutant. We hypothesize that upon
treatment, cell permeable methyl-2-PG enters the cell via passive
diffusion, moving down its concentration gradient from outside
the cell (5 mM) to inside the cell (0 mM). Once inside the cell,
methyl-2-PG is hydrolysed to 2-PG, which is not cell permeable
and chemically different from methyl-2-PG. Thus, the conversion
of methyl-2-PG to 2-PG eliminates intracellular methyl-2-PG,
which sustains the concentration gradient of methyl-2-PG across
the cell membrane (extracellular 5mM versus intracellular 0mM).
This in turn facilitates continuous diffusion of methyl-2-PG into
cells, and if the diffusion and hydrolysis of methyl-2-PG occur
more quickly than 2-PG consumption in glycolysis, restoration of
physiological 2-PG levels (B30 mM) inside the cells could be
eventually achieved.

Together, these data suggest that Y26 phosphorylation may
provide a regulatory window for cancer cells to promptly respond
to changes of nutrients and microenvironment, at least in part by
altering intracellular levels of 3-PG and 2-PG to coordinate
glycolysis and biosynthesis, providing a metabolic advantage to
cancer cell proliferation and tumour growth.

Methods
Mass spectrometry analysis. Determination of histidine phosphorylation was
performed using reversed phase high pressure liquid chromatography-mass spec-
trometry. The immunoprecipitated beads were washed with TBS and Flag-tagged
PGAM1 proteins were eluted by 3� FLAG peptide in TBS (Sigma) and directly
subjected to MS analysis. PGAM1 WT and Y26F mutant samples were resolved
using SDS–PAGE, and PGAM1 containing bands were excised. Bands were
digested with trypsin (Promega) overnight at 25 �C, and tryptic peptides were
extracted with repeated desiccation and swelling in acetonitrile and 100mM
ammonium bicarbonate, respectively. The extracted peptides were concentrated by
vacuum centrifugation and desalted using in-house made C18STAGE Tips before
mass spectrometric analysis. Samples were loaded by an Eksigent AS2 autosampler
onto a 75-mm fused silica capillary column packed with 11 cm of C18 reverse phase
resin (5 mm particles, 200 Å pore size; Magic C18; Michrom BioResources).
Peptides were resolved on a 110-min 1–100% buffer B gradient (buffer A¼ 0.1
mol l� 1 acetic acid, Buffer B¼ 70% acetonitrile in 0.1mol l� 1 acetic acid) at a flow
rate of 200mlmin� 1 (1200 series; Agilent). The HPLC was coupled to a mass
spectrometer (LTQ-Orbitrap; ThermoFisher Scientific) with a resolution of 30,000
for full MS followed by seven data-dependent MS/MS analyses. Collision-induced
dissociation was used for peptide fragmentation. Targeted runs were also per-
formed to increase the likelihood of quantifying the labile histidine phosphoryla-
tion. Peptide abundance of the phosphorylated and unphosphorylated peptides was
calculated by manual chromatographic peak integration of full MS scans using
Qual Browser software (version 2.0.7; ThermoFisher Scientific Inc.). The relative
abundance of the phosphorylated peptide was calculated as the ratio of the sum of
the areas underneath the peaks of phosphorylated peptide to the sum of the areas
underneath peaks corresponding to phosphorylated and unphosphorylated pep-
tides (total peptide). The peptide sequence and histidine phosphorylation were
confirmed by manual inspection of the MS/MS spectra.
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measured, compared with control cells with rescue expression of mPGAM1

WT, in the presence and absence of cell permeable methyl-2-PG. The error

bars represent mean values±s.d. from three independent experiments

(*0.01oPo0.05; **Po0.01).
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Sample preparation of H11-phosphorylated PGAM1 protein. Purified PGAM1
protein (100 mM, in 20mM Tris-HCl buffer, pH 7.4) mixed with 2,3-BPG (final
concentration: 500mM) and incubated for half an hour at room temperature.
Excess 2,3-BPG was removed by desalting. Purified protein and 2,3-BPG-treated
protein were directly analysed by MALDI-TOF mass spectrum using sinapic acid
as matrix solution.

Crystallization of PGAM1 proteins and data collection. Crystals of PGAM1 were
originally identified using the PEG ION crystallization screen kit (Hampton
Research). Optimised crystals were produced using hanging drop vapour diffusion
at 16 �C by mixing 1 ml of protein solution at 30–40mgml� 1 with 1 ml reservoir
solution containing 0.1M MES pH 6.0, 8% PEG 3350. Crystals appeared after 1 h
and continued to grow for several days. Non-phosphorylated PGAM1 was obtained
by eluting with 500mM imidazole from the Ni-NTA column and storing the
PGAM1 under 277 K for 1 week. The protein was then washed by with buffer A
(10mM Tris, pH8.0, 500mM NaCl) containing 20% glycerol three times and then
purified by gel filtration. Phosphorylated PGAM1 crystals were obtained by
treating WT PGAM1 with 5mM 2,3-BPG for half an hour and excess 2,3-BPG
were removed by buffer exchange before crystallization. Crystals were dehydrated
by 50% PEG 6,000 for 24 h, and quickly frozen in liquid nitrogen. All diffraction
data were collected at 100K at the macromolecular crystallography for life science
beamline LS-CAT (21-ID-F) and NE-CAT (24-ID-C), respectively, at the
Advanced Photon Source, Argonne National Laboratory. Native data sets
extending to 1.65Å resolution were collected at 0.9795Å wavelength (12.66 keV).
The data were processed with HKL2000 and the scaled data were used for mole-
cular replacement. Crystallographic statistics are summarized in Supplementary
Table S1.

Data refinement. For phasing, model building and refinement, the structures of
both PGAM1-apo form and phosphorylated PGAM1 were determined by mole-
cular replacement using Phaser in the CCP4 suite, with the template protein as the
search model (PDB accession code: 1YFK). The structures were then refined by
using Phenix. Manual rebuilding of the model was carried out using the molecular
graphics program COOT based on electron density interpretation. Water mole-
cules were incorporated into the model if they gave rise to peaks exceeding 3s in
Fo-Fc density maps. The final refined models have good stereochemistry with
98.5% of the residues in the most favored regions of the Ramachandran plot
with none in the disallowed regions (values calculated using PROCHECK from
CCP4 suite).

Xenograft studies. Approval of use of mice and designed experiments was given
by the Institutional Animal Care and Use Committee of Emory University. Nude
mice (nu/nu, male 6–8-week old, Charles River Laboratories) were subcutaneously
injected with 10� 106 H1299 cells stably expressing mPGAM1 WT and Y26F with
stable knockdown of endogenous hPGAM1 on the left and right flanks, respec-
tively. Tumour growth was recorded by measurement of two perpendicular dia-
meters of the tumours over a 6-week course using the formula 4p/3� (width/2)2

� (length/2). The tumours were harvested and weighed at the experimental
endpoint, and the masses of tumours (g) derived from cells expressing mPGAM
WT or Y26F mutant in both flanks of each mouse were compared. Statistical
analyses have been done by comparison in relation to the control group with a
two-tailed paired Student’s t-test.
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